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On Classroom Teaching and Textbook
Writing
An Example: The Mechanical Energy Balance

R. Byron Bird
Chemical Engineering Department
and Rheology Research Center
University of Wisconsin
Madison, Wisconsin 53706
U.S.A.

§1. The evolution of “engineering sciences”

In the first four decades of this century science courses
were taught in science departments, and in engineering depart-
ments science was applied to the solution of engineering prob-
lems. Since World War II there has been a gradual shift of the
teaching of many basic science topics (such as thermodynamics,
fluid dynamics, and mechanics) to the college of engineering,
where these subjects are taught under the general title of “engi-
neering sciences.” These topics appear to be of little interest to
the physicists, who have turned their attention to nuclear struc-
ture, nonlinear optics, string theory, and other “frontier” topics.

This shifting of the engineering science courses into the
colleges of engineering means that the engineering professors
now have the responsibility for the further development of these
subjects through research and for the maintenance of standards
in these disciplines. However, current funding patterns favor
those who are involved in the applied areas and who can show
that their research contributes to societal goals [1]. Those who
wish to dedicate themselves to teaching engineering-science
courses and doing very fundamental research do so at their own

eril.
F The result is a “misalignment” between the teaching and
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research duties of engineering faculty members. Professors now
have vigorous research programs, often well funded, and they
routinely participate in many technical meetings and workshops.
They also spend a great deal of time writing grant proposals to
compete for funds for their research programs. Their research
areas seldom correspond to the engineering science courses that
form a basic part of the undergraduate and graduate teaching
program. As a result they find themselves torn between pursuit
of research and research dollars on the one hand, and teaching
the fundamental subjects on the other.

§2. Faculty responsibilities for teaching and book-writing

It takes a lot of time to prepare well-organized, inspiring,
and responsible lectures to undergraduates. The first time that
one teaches a course, it is not unreasonable for a professor to spend
10-12 hours per lecture. In subsequent years only 3-4 hours of
preparation per lecture may be needed. Because of the pressures
for grant-proposal writing and grant administration, most pro-
fessors do not have such large blocks of time available, and there-
fore they must rely heavily on textbooks.

But textbook-writing requires even larger blocks of time,
enormous amounts of energy, and personal sacrifices. An author
must be completely up-to-date in his field, must pay scrupulous
attention to detail, and must be thoroughly familiar with the pub-
lished literature as well as the future directions of the subject.
The writing of textbooks receives little encouragement by admin-
istrators, and many books are unfortunately written without ad-
equate time and facilities. I have already written articles about
some of these problems elsewhere and need not pursue this sub-
ject further here [2,3].

§3. The macroscopic mechanical energy balance (MMEB)

Instead it might be more instructive to take a specific ex-
ample of the challenge of preparing responsible technical pre-
sentations for students and teachers. A well-known equation that
can be found in many engineering textbooks and handbooks is
the “(engineering) Bernoulli equation” or the “(macroscopic)
mechanical energy balance,” abbreviated here as “MMEB.” For
an engineering flow system (see Figure 1) operating at steady
state, the MMEB is usually given in textbooks as:

—

A%vz+gAz+jf%dp+Wm+E'v=0 (1)

in which the symbols have the following meaning:

AX = X at the exit plane (“2”) minus X at the entry plane
(.nrl n)

v = the fluid velocity of the entering or leaving stream

g = the gravitational acceleration

z = the elevation at the entry or exit port

p = the fluid density

p = the fluid pressure

W,, = the rate at which the system does work on the
surroundings by means of moving parts

. (sometimes called “shaft work”)

E, = the rate at which mechanical energy is converted
into heat by viscous dissipation (sometimes called,
inappropriately, “lost work”)

" = a quantity per unit mass

This MMEB has been used for many decades by mechanical, civil,
and chemical engineers to describe the relations among the vari-
ous mechanical quantities in a flow system.

§4. Confusion about the origin of the MMEB

Now, what do the chemical engineering textbooks say
about the origin of this equation? Without identifying the authors,
I will quote what some of them have written about the MMEB
cited above (underlines are mine):

*” An adequate appreciation of the underlying significance
of [the MMEB] cannot be had except in the light of the second
law.”

*”It must be distinctly understood...that this [MMEB] is
only a special case of the more general law of the conservation of
mgy_ 7"

*”For certain applications many writers have preferred
to put the general energy equation...in the following mechanical
energy form...”

*”Equation (12.07) is known as the [MMEB] and repre-
sents a grand transport process in which the one flux (the flow of
fluid) takes place under a series of independently variable po-
tential differences: a pressure difference, an internal energy dif-
ference, an entropy difference, a gravitational level difference and
a kinetic velocity difference.”
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*”The reader should realize that the [MMEB] is not a new
balance but rather a summary of the three momentum balances.”
*”The most useful form of the energy equation is one that
replaces the internal energy term in [the macroscopic energy bal-
ance| with a thermodynamic equivalent. We will require the use

of some basic thermodynamics, including the notion of entropy.”

*”The total energy balance...can be written in a form in-
volving only mechanical energies...”

*”The first and second laws of thermodynamics may be
combined to yield a macroscopic mechanical energy balance.”

*The [macroscopic] mechanical energy balance equation,
an alternate form of the general conservation of energy, is often
in a more convenient form for problem solving...The [macro-
scopic] mechanical energy balance arises from a consideration of
the conservation of momentum and the laws of thermodynam-

"

ics.

The above comments suggest that the MMEB (a) is an al-
ternative form of the total energy balance, or (b) is derived from
the second law of thermodynamics, or (c) is a consequence of the
law of conservation of momentum. In some textbooks there is no
definitive statement as to the origin of Eq. (1). Clearly the above
statements are in conflict with one another, and not all of them
can be correct. In fact, none of them are.

Is it any wonder that students have trouble understand-
ing the MMEB? What do chemical engineering instructors do
when faced with presenting Eq. (1) to an undergraduate class?
What do chemical engineering graduate students do while study-
ing for comprehensive examinations when they find conflicting
statements like these?

As a student I was totally mystified by the MMEB, but,
like most students, I dutifully substituted numbers into the equa-
tion and solved the homework problems with no real understand-
ing of the equation. As a young instructor, I was then faced with
trying to clarify the situation. After weeks of searching in vain
for a derivation of the MMEB, I finally resorted to deriving the
equation myself [4]. However, before discussing this derivation,
it is instructive to examine the derivation of the older “classical
Bernoulli equation.”

§5. The classical Bernoulli equation for the steady-state flow of
an inviscid fluid

Over two centuries ago Daniel Bernoulli suggested that
there should be some kind of relation among the various forms
of energy in a flow system. In his famous treatise, Hydrodynamica,
published in 1738 he did not derive the equation that bears his
name. It was actually Leonhard Euler who first published a deri-
vation of the Bernoulli equation in 1755.

We can derive this equation from the equation of motion
(which is based on Newton'’s second law of motion, or on a mo-
mentum balance):

P2 =-Vp-[V-1]- pVb 2)

in which 7 is the stress tensor, and ® is the potential energy per
unit mass, related to the gravitational acceleration vector by
g =-V®. We now assume that

¢ The fluid is inviscid, so that 7 = 0.

e The flow is steady, so that dv/dt =0.

* Gravity is acting in the minus z-direction and is inde-
pendent of time, so that ® = gz, with g being constant.

When we use the vector identity [v-Vv]=V}v? -[vx[Vxv]], the equa-
tion of motion becomes

pV30? - p[vx[Vxv]|=-Vp-pgVz (€))
Next we divide the equation by p, and then we form the dot prod-
uct of Eq. (3) with the unit vector in the flow direction s = v/|v|.
The term containing the curl of v then vanishes (a nice exercise in

vector analysis), and (s V) =d/ds, where s is the distance along a
streamline. Thus we get

i(lvz)z_limg_‘iz (4)

When this is integrated along a streamline from point “1” to point
“2,” we get

1
Mot o)+ [ odprs(zmmn)=0 O
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This is the (classical) Bernoulli equation. It interrelates the pres-
sures, velocities, and elevations at two points on any streamline
in the steady-state flow of an inviscid fluid. This derivation can
be found in many textbooks [5].

This Bernoulli equation was obtained from the equation
of motion, which in turn comes from a momentum balance at the
microscopic level. The Bernoulli equation can, however, also be
obtained from the energy equation for an inviscid, non-thermally-
conducting fluid (i.e., a fluid with no viscosity or thermal con-
ductivity), although this derivation does not seem to be gener-
ally known [6]. The classical Bernoulli equation can thus be re-
garded as resulting either from a momentum balance or from the
first law of thermodynamics appropriately generalized for open
systems.

For a viscous fluid in the flow system of Figure 1, Eq. (5)
can be modified by the ad hoc addition of two terms: Wm, to ac-
count for the work done on the surroundings via moving parts,
and E, to account for the degradation of mechanical energy into
thermal energy. This “plausibility argument” then gives Eq. (1),
and probably this is how the MMEB in Eq. (1) was first obtained.
Of course, this method of obtaining Eq. (1) gives no basic under-
standing of E, and W, in terms of the stresses and veloc:lty gra-
dients in the fluld nor does it explain how one chooses a “repre-
sentative streamline” through a complex piece of equipment with
moving parts.

§6. Two mathematical formulas needed for deriving the MMEB
Before proceeding we interrupt the main train of thought
to give two mathematical formulas:

(a) From one-dimensional calculus we know that for a function

f(x)

J2 (e =) 21 ©)

This equation just says that, when the derivative of a function is
integrated over an interval, the result is the difference of the val-
ues of the function at the two ends of the interval.

In three dimensions there is an analogous formula for a
vector function f(x,y,z)

b m—t, —

2

i (V-f)dV——-_:[(n-f)dS (7)

in which n is the outwardly directed unit normal vector at each
element of surface dS. This states that, when one integrates the
divergence of f over a volume in space, the result is the surface
integral of the normal component of the vector f. This is the Gauss
divergence theorem, usually taught in sophomore calculus courses.

(b) In the one-dimensional calculus there is another famous equa-
tion:

210 o= [ L flx) 22 - f(x,) S (8)

[}

This is the Leibniz formula for differentiating an integral. We are
here interested in this theorem when ¢ is the time. In taking the
time derivative of the integral, we must account for the change
of the integrand with respect to time and also the change in the
limits of the integral with time. The quantities dx, /dt and dx, /dt
are the velocities of the terminal points of the integration range.
Equation (8) is an extraordinarily useful equation.

The three-dimensional version of this formula is less well
known [Ref. 7, Eq. A.5-5; Ref 8, p. 1-51]:

d—jf(xyz:)dv j—dv+jnvs )fdS )
vin Vi) Sy

This equation describes the time rate of change of an integral
over a volume whose shape and magnitude change with time.
Here, as in Eq. (8), the time derivative of the integral accounts for
the change of the integrand with respect to time and also the
change in the shape of the bounding surface with time. The quan-
tity v is the velocity of a surface element dS. A less general ver-
sion of this equation is called the Reynolds transport theorem [9].
[Caution: Students should not be encouraged to use Egs. (7) and
(9) until they have actually calculated the left and right sides of
these equations for several specific functions and for several spe-
cific volumes.]

§7. Derivation of the MMEB
The derivation of the classical Bernoulli equation given
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above suggests that we should begin by forming the dot product
of the velocity v with the equation of motion in Eq. (2). This gives

po(3v? 4 ®)=—(v-Vp) - (v-[V 1) (10)

which is the equation of change for mechanical energy (cf. Eq. 3.3-1 of
Ref. [7]). This can be rearranged by using the equation of conti-
nuity and some standard vector-tensor identities, to give

%(%pvz + pfi:v) = _{V - (%,cuv2 +p(i>)v) ~(V-pv)=(V-[r-v])
+p(V-v)+(r:Vv) an

This equation states that the time rate of change of the kinetic
and potential energies at a point in the flow system results from
(a) the net addition of kinetic and potential energies by convec-
tion, (b) the work done by the pressure and viscous forces, and
(c) the rate of conversion of mechanical energy into thermal en-
ergy by the pressure and viscous forces.

Next we integrate Eq. (11) over the entire volume of the
flow system, which is changing with time because of the moving
parts in the system. In doing this, we use the Gauss divergence
theorem to transform the volume integrals into surface integrals,
and we also apply the Leibniz formula to the first term. This gives

i {1 BV == [l (1 )i i

—I(n‘pv)dS— J(n-[r-v]}dS

5(r) §(t)

+ [p(V-v)av+ [(z: Vv (12)

Vir) Vin

The surface S(t) consists of four parts:
*the fixed surfaces S;, on which both v and v are zero
*the moving surfaces S,,, on which v = v, both being
nonzero
ethe cross-section of the entry port S;, where v, =0
sthe cross-section of the exit port S,, where v =0
Presently each of the surface integrals will be split into four parts
corresponding to these four surfaces.
Going from Eq. (2) to Eq. (10), and from there to Eq. (12)

8

involves only mathematical manipulations. The next task is to
interpret the terms in Eq. (12), and to introduce several assump-
tions.

The term on the left side can be interpreted as the time
rate of change of the total kinetic and potential energies
(Kot + ®yo) within the “control volume,” whose shape and
volume are changing with time. We next examine seriatim the
five terms on the right side:

Term 1 contributes only at the entry and exit ports, with cross-
sections of magnitude S, and S,, and this gives the rate of influx
and efflux of kinetic and potential energy:

Term1 = (%p,(vf )S, +P1&’1(01)51) —(%,o2 (v3)S, +p,®, (v, )52) (13)

The angular brackets indicate an average over the cross section.
To get this result we have to assume that the fluid density and
potential energy per unit mass are constant over the cross sec-
tion, and that the fluid is flowing parallel to the tube walls at the
entry and exit ports. The first term in Eq. (13) (which includes the
minus sign in Eq. (12)) is positive, since at “1”, (n-v)=-v,, and
the second term is negative, since at “2”, (n-v) = +v,.

Term 2 gives no contribution on S; since v is zero there. On each
surface element dS of S, there is a force npdS acting on a surface
moving with a velocity v, and the dot product of this quantity
gives the rate at which the fluid does work on the element dS of
the moving surface because of the pressure, and we use the sym-
bol WY to indicate the integral over all these surface forces. Then
the integrals over the surfaces S, and S, (including the minus
sign in Eq. (12)) give the work required to push the fluid into the
system at “1” and the work required to push the fluid out of the
system at “2”. Therefore Term 2 gives finally:

Term 2 = p,(v,)$, - p,(v,)S, W, (14)

Here we have assumed that the pressure does not vary over the
cross-section at the entry and exit ports.

Term 3 gives no contribution on S, since v is zero there. The inte-
gral over S, canbe interpreted as the rate at which the fluid does
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work on the moving surfaces by means of the viscous forces, and
this integral is designated as W(. At the entry and exit ports it is
conventional to neglect the work associated with the viscous
forces, since they are generally quite small compared with the
pressure contributions. Therefore we get

Term 3= -w{? (15)

Note that for both the pressure and viscous work terms, we do
not include the minus sign in Eq. (12) in the definition of the quan-
tities W and W(?. We use the symbol W,, = W + W(? to repre-
sent the total rate of doing work on the surroundings by means
of the moving parts.

Terms 4 and 5 cannot be further simplified and we write

Term 4 = + [p(V-v)}V= -E, (16)
vie)

Term 5 = + j(f:V\')dV =-E, (17)
For Newtonian fluids the quantity E, is the rate at which me-
chanical energy is irreversibly degraded into thermal energy be-
cause of the viscosity of the fluid; it is always a positive quantity.
Quite a lot is known about how to estimate E, in a variety of
flow situations [Ref. 7, §7.4]. (For viscoelastic fluids, which we
are not considering here, E, has to be interpreted differently and
may even be negative.) The quantity E. is the rate at which me-
chanical energy is reversibly changed into thermal energy because
of the compressibility of the fluid, and it may be either positive
or negative. If the fluid is assumed to be incompressible, then E,
is zero.

When all the contributions are inserted into Eq. (12) we finally
obtain the MMEB:

d .
E(Kmt +¢l0t)=(%p1(vf)sl +p®(v,)S, +P1<U1)Sl]

X (18)
_(%92(03)52 +p2¢2(02)52 +p2(92)‘92)_wm _Ec _Ev

If, now, we introduce the symbols w, = p,(v,)S, and w, = p,(v,)S,

10

for the mass rates of flow “in” and “out”, then Eq. (18) can be
rewritten as

d
dt 2 (v)

3
_(Ktm +¢m)=_6[lﬂ+&)+§1w_wm_Ec_Eu (19)

This is the final form for the MMEB. It includes the time-depen-
dent terms, the prescriptions for the averaging of the velocities,
and explicit expressions for E, and E. (see Egs. (16) and (17)).
Keep in mind that several assumptions have been made in its
derivation:

ethe pressure, density, and potential energy do not vary

over the cross sections at the entry and exit ports

sthe fluid velocity is parallel to the tube walls at the entry

and exit ports

ethe stress tensor does not contribute to the work terms

at the entry and exit ports
These are generally not serious limitations, but if situations arise
where these assumptions are not valid, one can always go back
to the general expressions in Eq. (12).

As long as there are moving parts in the system, there is
no possibility for “steady state” flow. We can, however, talk about
situations in which the total kinetic and potential energies are
not changing with time and in which the mass rates of flow “in”
and “out” are equal (most people would regard these as a “steady-
state operations”). Then the MMEB becomes, if we use @ = gz

1(*) PloWw +FE +F =
A[5W+gz+; +W,+E.+E, =0 (20)

in which W, =W, /w, and E, and E, are defined similarly. In the
next section we attempt to go from Eq. (20) to Eq. (1).

§8. An alternative (approximate) version of the steady-state
MMEB

If we assume that the velocity profiles are flat at the entry
and exit planes, then Sv3 )/(v) is the same as %, and the kinetic
energy terms in Egs. (1) and (20) are reconciled. Relatively small
errors are introduced by this assumption if the flow is turbulent.

11
Academy of Chemical Engineers Lectureship, 1998 UMR


Koy 
Academy of Chemical Engineers Lectureship, 1998     UMR

Koy 
 


It is more difficult to reconcile those terms in Egs. (1) and
(20) that involve the pressure. This requires getting an approxi-
mate expression for E_ defined in Eq. (16). We imagine that there
is a representative streamline running through the system, and
we introduce a coordinate s along the streamline as in §5 above.
If there are moving parts and if the system geometry is quite com-
plex, it may not be possible to do this. It is assumed that pres-
sure, density, and velocity do not vary over the cross-section. We
further imagine that at each position along the streamline, there
is a cross-section 5(s) perpendicular to the s-coordinate, so that
we can write dV = S(s)ds.

We start by using the fact that (V- pv) = 0 at steady state so
that

E.=-[p(V-v)aV = [B(v.Vp)av (21)
v vP

Then we use the assumption that the pressure, density, and ve-
locity are constant over the cross-section to write approximately

_[2P( %P
E =] p(v ds JS(s)ds (22)

Although p, v,and S are functions of the streamline coordinate s,
their product, w = pvS, is a constant for steady-state operation
and hence may be taken outside the integral. Therefore

E = ’L(d_P) ——wlp (1
c=wl] 27\ s ds LN n s ds (23)

Integration by parts then gives

2
EC=—w£
P,

When this result is put into Eq. (20) and flat velocity profiles are
assumed, Eq. (1) is obtained. In Eq. (1) the integral term may be
difficult to calculate, since the pressure-density relation has to be
known along a “representative streamline.” Similarly in Eq. (20)
the E_ term may be difficult to evaluate, except when incompress-
ible flow is assumed. Because of the questionable nature of the
assumptions made in this section, it seems preferable to use Eq.
(20) rather than Eq. (1). Also Eq. (20) is easily generalized to sys-
tems with multiple inlet and outlet ports, whereas Eq. (1) is not.

12

2ldp | _ P 21
- J'1 Eads} = —wA(B] + wj] ;dp (24)

§9. Concluding comments regarding the MMEB

The derivation of Eq. (19) involves some mathematical ma-
nipulations, but there are really just two basic steps: (i) one takes
the dot product of v with the equation of motion to generate the
equation of change for mechanical energy, and (ii) the latter is
integrated over the volume of the flow system. This generates
the MMEB in its complete unsteady-state form. The equation of
motion is based on the concept of balance of momentum, and
this is the only concept from physics that is used.

The MMEB in Eq. (19) can be rewritten in terms of thermo-
dynamic functions if one desires. In Ref. [7] the MMEB was writ-
ten in terms of the Helmholtz and Gibbs free energies for isother-
mal flow in Egs. 7.3-1 and 15.2-1, and in terms of internal energy
and enthalpy for isentropic flow in Eq. 15.2-2. In retrospect, I wish
we had not done this. Perhaps our writing of the MMEB in this
form reinforced the misconception that thermodynamical argu-
ments are needed in the derivation.

Let us next discuss the relation of the MMEB to other en-
ergy balances. The total energy balance can be obtained in two
ways: it can be written directly by extending the first law of ther-
modynamics to an open system, or it can be obtained by inte-
grating the equation of change for energy over the volume of the
flow system by following the procedures in §7 above. By either
method one gets the macroscopic total energy balance:

(K + @ +Uy ) =—A 1) 5,042 w+Q-W,  (25)
dt tot tot tot 2 (v) p m ;

According to this balance, the total energy (kinetic + potential +
internal) changes with time for three reasons: (a) total energy
enters and leaves the flow system through the ports and “1” and
“2”; (b) heat is added to the system through the walls (the Q-
term); and (c) the system does work on the surroundings,
W,, +p,(v,)S, = p1(v,)S;. When the MMEB of Eq. (19) is
subtracted from Eq. (25) the following macroscopic internal energy
balance is obtained:

%um =-A(Uw)+Q+E, +E, (26)

13
Academy of Chemical Engineers Lectureship, 1998 UMR



Koy 
Academy of Chemical Engineers Lectureship, 1998     UMR


This interesting equation states that the internal energy of the
system increases because of a difference in the rates of input and
output of internal energy by flow, because of the rate of heat trans-
fer to the system, and because of the rate of conversion of me-
chanical energy into thermal energy. I am unaware of any physi-
cal reasoning that leads to Eq. (26) directly; it is obtained by mak-
ing use of the MMEB. It may also be obtained by integrating the
equation of change for the internal energy over the volume of
the flow system. However, that equation is derived by using the
equation of motion (Ref. [7], §10.1).

Oblivious of this fact, some textbook authors write Eq.
(26), or a simplified version thereof, and subtract it from the total
energy balance in Eq. (25), and thereby obtain the MMEB of Eq.
(19), with very little effort. This has apparently given rise to the
incorrect notion that the MMEB is an “alternative form of the
total energy balance.” There are also textbook derivations that
introduce the second law, but this is clearly not necessary.

From the above derivation it is clear that neither the first
nor the second law of thermodynamics is needed to obtain the MMEB.
For further comments on the misunderstandings regarding the
MMEB, and some of the historical developments, the reader is
referred to the article by Whitaker [10]. Also Astarita and Mackay
have discussed the MMEB for viscoelastic fluids, but with the
restriction to steady-state, incompressible flow [11].

So what should we tell our undergraduate students about
the MMEB? We should certainly tell them what the physical ba-
sis of the equation is. It would not be inappropriate to give them
a careful derivation of the classical Bernoulli equation and then
give the plausibility arguments of §5 for adding on the work and
dissipation terms; they should then be told, in words, what the
complete derivation involves. Going through the entire develop-
ment in §7 above would probably be all right for the best under-
graduates, but it might be more than the average or below-aver-
age students can handle. But even they should be able to get the
gist of the derivation. After all, it is just a two-step derivation:
multiply the equation of motion by v, and then integrate! In any
event, we should avoid giving them incorrect developments.

The macroscopic mass, momentum, energy, and angular
momentum balances, along with the MMEB, should be presented
to students as a set of equations to be used for describing macro-
scopic systems. It should be made clear that, although the mac-
roscopic momentum balance and the MMEB both come from the

14

equation of motion, the two macroscopic balances contain differ-
ent information; one is a vector equation and the other a scalar
equation. In addition it should be emphasized that the use of the
macroscopic balances usually requires some intuition about the
system (based on experience), experimental information about
the system, or flow visualization studies. Most textbooks (includ-
ing [7]) have been remiss in not making this point clear.

The above discussion illustrates that careful thought is re-
quired for preparing lecture material and textbooks. Errors in text-
books tend to proliferate, and textbook authors must realize that
an irresponsible comment may affect many generations of stu-
dents. It is impossible to write error-free textbooks, of course, but
to minimize the errors, textbook authors need a lot of uninter-
rupted time as well as conscientious and intelligent co-authors
or assistants. Deans and department chairmen need to recognize
the role of textbook preparation in upgrading undergraduate
education and should give encouragement and assistance to those
who are willing to engage in book-writing. Also those who have
been imaginative and productive researchers should be given
particular encouragement to assist in the preparation of the text-
books, monographs, and handbooks that will shape the next gen-
eration of engineers, teachers, and students.

The author will welcome any comments on his views
about the MMEB and other matters discussed above. He can be
reached at <bird@chewi.che.wisc.edu>.
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Figure 1. An engineering flow system operating at steady state.
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Chemical Engineering at University of
Missouri-Rolla

The University of Missouri School of Mines and Metallurgy,
which in 1964 became the University of Missouri-Rolla, was founded
in 1870 as the first technological institution west of the Mississippi
River and one of the first in the nation. The new school was Missouri’s
response to the acute need for scientific and technical education in
the developing nation and was a product of the Morrill Act of 1862.

The Department of Chemical Engineering at the University of
Missouri-Rolla started as the Department of Chemical Engineering
and Chemistry in 1915. The department was divided into the
Department of Chemical Engineering and the Department of
Chemistry in 1964, when the campus became part of the four-campus
University of Missouri. Both are still housed in the same building
and work closely together and both offer undergraduate and
graduate degrees through the doctorate.

The University of Missouri-Rolla includes the School of
Engineering, the School of Mines and Metallurgy, and the College
of Arts and Sciences. The Department of Chemical Engineering is
part of the School of Engineering. Total enrollment at UMR is about
5000 students, and in the Department of Chemical Engineering it is
about 300 students beyond the freshman year. About 80 per cent of
UMR students are engineering or science majors. The students
benefit from working in a technological environment with well-
equipped laboratories.
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